Minimum k-path vertex cover

نویسندگان

  • Bostjan Bresar
  • Frantisek Kardos
  • Ján Katrenic
  • Gabriel Semanisin
چکیده

A subset S of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. Denote by ψk(G) the minimum cardinality of a k-path vertex cover in G. It is shown that the problem of determining ψk(G) is NP-hard for each k ≥ 2, while for trees the problem can be solved in linear time. We investigate upper bounds on the value of ψk(G) and provide several estimations and exact values of ψk(G). We also prove that ψ3(G) ≤ (2n +m)/6, for every graph G with n vertices and m edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a relation between k-path partition and k-path vertex cover

The vertex cover problem and the vertex partition problem are central problems in graph theory and many generalizations are known. Two examples are the minimum k-path vertex cover problem (MkPVCP for short, introduced in [1]), which asks for a minimum vertex sets covering every path of length k−1, and the minimum k-path partition problem (MkPPP for short, introduced in [2]), which asks for a mi...

متن کامل

The k-Path Vertex Cover in Product Graphs of Stars and Complete Graphs∗

For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. The cardinality of a minimum k-path vertex cover is denoted by ψk(G). In this paper, we present the exact values of ψk in some product graphs of stars and complete graphs.

متن کامل

The k-path vertex cover of some product graphs

For a graph G and a positive integer k, a subset S of vertices of G is called a k-path vertex cover if every path of order k inG contains at least one vertex from S. The cardinality of a minimum k-path vertex cover is denoted by ψk(G). In this paper, we give some bounds and the exact values in special cases for ψk of the Cartesian, and lexicographic products of some graphs. Key–Words: Vertex co...

متن کامل

On computing the minimum 3-path vertex cover and dissociation number of graphs

The dissociation number of a graph G is the number of vertices in a maximum size induced subgraph of G with vertex degree at most 1. A k-path vertex cover of a graph G is a subset S of vertices of G such that every path of order k in G contains at least one vertex from S. The minimum 3-path vertex cover is a dual problem to the dissociation number. For this problem we present an exact algorithm...

متن کامل

The k-path vertex cover of rooted product graphs

A subset S of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. Denote by ψk(G) the minimum cardinality of a k-path vertex cover in G. In this article a lower and an upper bound for ψk of the rooted product graphs are presented. Two characterizations are given when those bounds are attained. Moreover ψ2 and ψ3 are exactly de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2011